A Compar ative Evaluation of Internet Pricing Models:
Smart Markets and Dynamic Capacity Contracting

Abstract

Internet pricing is receiving increased attention in industry and academia. In this paper, we report the
results of comparing two Internet pricing models. Using simulation techniques, we evauate the
technical and economic efficiencies of the Smart Market model proposed by MacKie-Mason & Varian
(1993) and compare it with Dynamic Capacity Contracting, a pricing scheme that we have developed.
Dynamic Capacity Contracting is a congestion-sensitive pricing model implementable in the
differentiated service architecture of the Internet. The central idea of congestion-sensitive pricing is
that, based on congestion monitoring mechanisms, a network could raise prices and vary contract terms
dynamically. Our results indicate that while the smart market model achieves a higher economic
efficiency, it results in poor technical performance of the network. On the other hand, the dynamic
contracting model achieves a better balance of economic and technical efficiencies. We discuss the
implications of our work and identify future research directions.
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Introduction
The Internet traffic volume has been increasing at an exponential rate over the last few years. So

far, capacity provisioning and developments in traffic management have sustained this growth in
network traffic. However, network congestion has become more common resulting in a general
deterioration of service levels experienced by users. Many scholars believe that it is necessary to share
bandwidth in a more controlled manner taking into account factors such as application requirements,
network efficiencies and economic efficiencies. Many have suggested that responsive pricing schemes
can help achieve both network and economic efficiencies (MacKie-Mason, Murphy & Murphy, 1997
[11]; MacKie-Mason & Varian, 1993 [9]; Gupta, Stahl and Whinston, 1997 [6]).

Many schemes have been proposed to price the Internet and its various domains (MacKie-
Mason & Varian, 1995 [10]; Clark, 1997 [4]; Gupta, Stahl & Whinston, 1997 [6]). However, there has
been little experience in implementing and studying these schemes in the production Internet. A major
impediment in doing so is the minimalist "best effort” service model of the IP protocol which does not
provide a standard mechanism to specify packet forwarding behaviors other than the "best-effort”
service utilizing the statistical multiplexing efficiencies of packet switching.

However, this scenario is rapidly changing as the Internet Engineering Task Force (IETF) is
standardizing two approaches, Integrated Services and Differentiated Services, to support scalable
service differentiation (Braden, Clark & Shenkar, 1994 [3]; Blake et al., 1998 [1]). While the two
approaches can coexigt, it is expected that the latter approach (diff-serv) will be the choice of 1SPs and
backbone providers. Several signaling and control schemes for the diff-serv architecture such as
bandwidth brokers for handling service level agreements between users and providers have been
proposed (Nichols, Jacobson and Zhang, 1997 [12]) that allow price-based discrimination to be
incorporated within IPv4. We have developed a pricing model, Dynamic Capacity Contracting that
utilizes the traffic management features offered by the diff-serv architecture.

The objective of this paper is twofold. First, to develop mechanisms to implement both the
Dynamic Capacity Contracting and the Smart Market model in the differentiated services architecture.
Second, to perform a comparative evaluation of the two models on dimensions such as economic
efficiency and technical efficiency. The rest of the paper is organized as follows. First, we present a
critical review of the Internet pricing models. Next, we describe Dynamic Capacity Contracting and
position it relative to other models proposed in literature. We then describe our implementation schemes
for both dynamic capacity contracting and the smart market model. Finally, we present the results of

our simulations and discuss our findings.



A Review of Internet Pricing Models'
Among the propaosed pricing proposals, flat-rate pricing [2], is the most common mode of

payment today for bandwidth services, and is popuar for several reasons. It has minimal acmurting
overhead, and encourages usage. During congestion, havever, the marginal cost of forwarding a padet
isnat zero, andflat pricing does not offer any (dis)-incentive for users to adjust their demand, leading to
potential ““tragedy of commons’ [6]. On the other side, Odlyzko [13] suggested that flat pricing and
over-provisioning is a sustainable strategy given the fali ng costs of bandwidth and avail able lead-time
for network provisioning. However, there exist several niches (e.g. international links, tail circuits to
remote markets, peaing points or complex meshed networks) where dthough technicadly available,
bandwidth canna be added fast enough.

Dynamic pricing models that take the state of the network into acmurt in price determination
have been proposed as being more resporsive. Usage-based pricing regulates usage by imposing a fee
based onthe amourt of data adually sent and congestion-sensitive pricing uses a fee based on the
current state of congestion in the network. Usage-based pricing has its limitations. It impases usage
costs regardless of whether the network is congested or not. So, it does not address the cngestion
problem diredly, though it does indiredly make users more resporsible for their demands. Also, it is
likely that users may not like the posteriori pricing in usage-based models unlessit is a very small part
of their overal expenditure.

MadKie-Mason and Varian (1993 [9] introduced the concept of congestion-sensitive pricing in
their scheme cdled smart market. Under this model, the adual price for ead padket is determined
based onthe aurrent state of network congestion. Users are expeded to bid a pricefor their padcets and
padkets whose bids excealed some autoff amourt will be almitted and the rest are dropped or buffered.
The autoff amourt is determined by the cndtion that the marginal willi ngnessto-pay for an additi onal
padket is equal to the marginal congestion costs impased by that padet. In order to make the scheme
incentive compatible users are not charged the prices they bid, bu rather are charged the bid of the
lowest priority padket that was admitted to the network. The goal is to find a pricing medianism that
will lea to efficient use of scarce resources. It is expeded that congestion-sensitive pricing could
convert delay and queuing costs into ddlar costs and force the user to compare the value of her padets
to the msts e isimpaosing on the system.

Since the granularity of price setting is at the padet level, the smart market model is expeded

to have ahigh transadion overhead. Moreover, the problems associated with pasteriori pricing pointed

1 In order to contain the length of the paper we have reviewed only those pricing models that are directly relevant to the focus of this research. A
more complete review should include models proposed by Gupta et al (1997)[6] and Kelly (1998)[8].



out ealier apply to this sheme & well. More importantly, several technicd challenges have to be
ironed ou to implement this £heme under the TCP/IP framework, which have not be aldressed so far.
Bidding higher prices does not guarantee a asared service quality; the smart market mechanism
guarantees only relative priority. A padket with a high bid gains access ®orer than ore with alow bid,
but delivery time caana be guaranteed. Rejeded padkets could be bourced badk to users or be routed to
a dower network possbly after being stored for a period in a buffer in case the mngestion falls
sufficiently a short time later.

Clark [4] suggested that instead of charging for adual usage, users sioud be made to pay for
the privilege of using the network capadty when needed. He propased an expeded capadty all ocation
scheme where users pay a price for a high probability of delivery for a given volume of traffic. Users
spedfy the minimum data objed size that they would like to be transferred with a high probability of
delivery, together with an assumed duty cycle for these transfers. Users do nd pay for the adual usage;
instead if the adual usage is within their expected capacity contract their padets will be handed
withou any impaosition o delay costs. If the adual usage exceels the expeded cgpadty during periods
of congestion, wsers could experience adelay in the transmisson. In either case, users do nd pay more
than their contraded cgpadty costs. Note that this £heme is not congestion-sensiti ve.

In summary, whil e the smart market model addresses the need for congestion-sensiti ve pricing,
it does not have a t¢ea deployment or service asurance model. On the other hand, the expeded
cgoadty contrading model is easily deployable in the diff-serv architedure axd haes very low
transadion overheals. However, this sheme is an implicitly static one that does not acourt for
network congestion. Our work is an attempt to addressthe deficiencies of both these models and strikes
amidde ground letween these two schemesin terms of granularity of price setting. In the next sedion,
we discussour proposed model, Dynamic Capadty Contrading.

Dynamic Capacity Contracting (DCC) Framewor k
DCC extends Clark’ s expeded cgpadty contrading model to incorporate short-term contrading

and adds mechanisms to make it congestion-sensitive. It is smilar to the smart-market scheme in the
optional use of congestion-sengitive pricing and to Clark’s expeded cgpadty scheme in the use of
contrading. The key differences lie in the new medhanisms for estimating the congestion state of the
network and the granularity of price setting which is per user or per sesgon. Short-term contrads are
essential to provide the degreeof freedom to make DCC congestion-sensiti ve since long-term contrads
do nd give the flexibility to change the aurrent price of a contrad based uponcongestion. Short-term
contrads naturally expire and forcere-negotiation, at which pant pricerevisions based uponcongestion

measures are posshle.



We can model a short-term contrad (service) for a given traffic dassas a function d volume
(number of bytes) and the term of the mntrad (time units):
Service(S) = f(Volume (V) , Term (T)) 1.1

We asume that the user can send the maximum volume negotiated within the contrad term at
most. As in Clark's asaured service model, the provider will asaure that the negotiated traffic will be
caried with a high expedation d delivery. In general, the user may send this traffic to any destination
of its choice (i.e. a paint-to-anywhere service); however for this paper, we focus onthe case of point-to-
point service since the measurement of congestion in the former case is nontrivial. We make one
simplificaionto (1.1) by assuming that the term parameter (T) isfixed i.e. different users canna choose
different term values. The user now sees a simple service offering: the flexibility to contrad a desired
volume (V) for a fixed term (T) at a given price per unit volume (R,), which may be congestion
sensitive (for the term).

In summary, ou scheme has been designed to use pricing and dynamic cgadty contrading as
new dimensions in managing congestion, as well as to achieve smple e@namic goals. In this ense, it
is well positioned as a pragmatic intermediate gproach between Clark’s expeded capadty model [4]
and the smart-market model [9]. The key benefits of our scheme ae:

» A framework for congestion-sensiti ve pricing (not usage-based or flat-priced)
» Doesnat require per-padcket acmurting anywhere (works at a contrad term granularity)
* Provides deterministic service asaurances like Clark’s model [4]
» Doesnat require upgrades or software suppat anywhere in the network except at logicd boundaries
(or edge nodkes)
* Uses price and dynamic cgpadty contrading as a truly new dimension in managing network
congestion.
Implementation of DCC and Smart Market Modelsin the Diff-Serv Architecture
We implemented bah the DCC and the smart market models in a smulated dff-serv
architedure in order to evaluate their performance. A simple network model with a single bottlenedk
and edge-to-edge aggregate flows was used for the implementation.

DCC Implementation
We set up short-term contrads between a * customer” comporent and a “provider” comporent

(which stands at the enterprise-ISPboundxry). The austomer initi ates the service with a request for the
table of contrads available & the provider. In resporse, the provider computes the entries of the table
(price per unit volume, R,), maximum avail able cgadty (bottlenedk cgpadty times contrad term) and
term of the contrad and returns the table to the austomer. In this initial scheme, we aume asingle

entry in the table, which speafies P, for a mntrad term of length T.



The price, P, is based upon the formula: P, = > 5 , Wwhere 2B; isthe

min(average rate limit, link capacity) * Term

estimated total budget of all customersfor the contrad term.

The average rate limit is cdculated over the contrad term and is based upona measure of
congestion in the network. This parameter, is a measure of the “congestion-sensitivity” of the pricing
scheme. The mntrad term is sub-divided into smaller observation intervals and a dedsion is made
whether the network is congested in ead of these smaller intervals. Each olservation interval when
congestion is ee is cdled a amngestion epoch. Identification d congestion epochs on an edge-to-edge
basis is a nontrivia task. However, this problem has been solved by another group recently [7]. We
used the tod's developed in [7] to identify congestion epochsin our work.

During intervals when congestion is nat observed we assume that the rate limit i ncreases using
an additive increase padlicy, i.e. the rate limit isincremented by A = 1 padket/RTT. The average rate
limit is sSmply the mean of eat o the rate limitsin the observation intervals. The rate limit for the first
observation interval in a @ntrad term is initialized to the average rate limit in the previous contrad
term, and the very first rate limit is asuumed to be the accsslink rate. Unlike traditional rate-based
congestion control, we aaume in this paper that the rate limit is not diredly enforced, bu is used
indiredly to cdculate pricing and thereby influence the demand for network usage.

The austomer choaoses a desired volume of premium data traffic to be sent intime T based upon
the price per unit volume, P,, a demand curve, and hs avail able budget. The demand curve is assumed
to be asimple hyperbdic curve between price and aggregate demand (volume). The volume contraded
by a austomer is cadculated as (Bi/P,) where B; is the austomer's budget. But we boundthe ntraced
volume by a maximum volume, V. (Which is equal to bdtlenedk cgpadty times T) permitted by the
provider to avoid accesslink congestion. In such cases, any unused customer budget is carried over to
the next term for that customer. We dso assume that the austomer has equal default budget all ocations
per-contrad term (which may differ from the dlocaions of other customers). Our implementation
asumes that the provider is able to estimate & least the sum of all the austomer budget all ocations per
contrad term.

This choice of avolume isthen conveyed by the austomer to the provider, which setsup aleaky
bucket traffic condtioner to mark up to V bytesin time T as “IN” (high priority). Observe that this
contrading now defaults to the expeded cgpadty framework propased by Clark [4]. Spedficdly, this
scheme provides srvice asurances and is not just a best-effort service or a service whaose quality is

more probabili stic and dynamic asin the smart market model [9].



What happens when a austomer sends more traffic than contraded as IN-profil e traffic? Clark’s
model [4] suggests that this traffic be marked as OUT and admitted into the network where a
differentia dropping scheme would drop them if necessary before IN padkets. But in our recent work
[7] we have seen that it is better from an end-to-end performance perspedive (espedally for TCP flows)
if the battlenedks are distributed to the edges of the network where they are likely to be smaller. Thisis
because buffer management schemes do nd scde well with an increase in the number of contending
TCP flows at the core. Therefore, it makes snse to send orly a part of the excesstraffic into the
network marked with OUT tokens and hdd the remaining excesstraffic a the edge. The average rate
limit provides a basis for determining how much excess traffic shoud be dlocaed OUT tokens.
Spedficdly, the total pod of OUT tokens is smply the difference between the average rate limit *
contract term and the sum of the contracted (IN) volumes of all customers. We then split this OUT
token pod equally among the contending customers excess traffic. Future work may explore other
ways of sharing this OUT token pod.

The padkets thus condtioned in a congestion-sensitive manner, enter the network and proceal
through a series of interior routers in the diff-serv network till t hey read the egressedge router. Simil ar
to Clark’s model, we exped interior routers to provide suppat for service differentiation by using a
priority drop algorithm RIO (Randam Early Drop, with IN/OUT marking) [4], which is an extension o
the well-known RED drop algorithm [5].

Smart Market | mplementation

In the smart market model a per-padket-charge which refled marginal congestion costs is
imposed. The price-per-padket varies dynamicdly depending onthe level of congestion in the network.
Userstry to send their padets depending on the level of congestion in the network and their per-padket
utility levels. In ather words, it is assumed that users will value eat padket depending on the
importance of this padket for them. They assgn a “bid” value for ead padket and this padet tries to
make through the network. Each padet has a probability of being dropped depending on the aurrent
threshold (cutoff) value anong the routers in the network. This threshold value depends on the level of
congestion at the particular router, and is adjusted by that router. Finally, users pay the highest threshold
value that it passed through, also cdled “market-cleaing price”. Please refer to [9] for further detail s of
the smart market.

We will now examine the @nstraints of implementing the smart market model in the diff-serv
framework. The austomer sets the bid value, b, in the padket and sends it to the network. The packet
passes through an ingressedge node and series of Interior Routers (IRs), ead of which has a threshold



value 1. IRs simply drop the packet if it does not satisfy the condition of b>t. If the packet satisfies the
condition, it is placed into the queue sorted according to its bid value. Note that this ordering does not
suit TCP. If the packet goes through the network i.e. it reaches the egress edge node, then accounting is
done for this customer according to the clearing price of the packet.

The smart market scheme assumes that the customers are fed back such information
immediately without any delay, which is not possible to implement on a real wide-area network. So, an
approximation is needed. We use deterministic time intervals at ERs and IRs set to be larger than RTT
as a way to handle this feedback problem, i.e. customers get feedback from the network at the end of
each time interval thereby they can make adjustments to their bid values and demands. So, the length of
thistime interval is acomparable measure to the length of contract term in DCC.

What should a customer do when she is fed back the current status of the network? Mac-Kie-
Mason & Varian, (1993) [9] suggests that each customer should maximize their utility
(u(x) - D(Y) - px) by selecting the best x, where u(x) is the utility of the customer, and p is the current
price charged for a packet in the network. We assumed a concave indifference curves between delay
and packets sent and derived the utility function and the corresponding demand function (which
identifies the number of packets to send in the next time interval) for the customer. It turned out that
customers should adjust their demand inversely proportional to a positive power of the clearing price.
In addition, since the value for x should reflect the budget constraint of the users, they would chose:

Budget
x = 2unagel
p

. After deciding the volume, the customer bids randomly between the clearing price and the

maximum bid value that she can afford.
Performance Analysis

We conducted simulation experiments to compare the performance of the two models. Our
objective was to evaluate model performance in terms of both technical efficiency and economic
efficiency. The performance measures we use for both schemes are utilization, queue length, relative
volume alocations, throughput, goodput and packet loss.

We used a simple network configuration in our analysis. The configuration includes a single
bottleneck with a rate of 1Mbps. The bottleneck can be accessed by the customers through an edge
router (corresponds to the provider). The customers send constant bit rate UDP traffic with fixed packet
sizes (1000 bytes). The contract term in DCC and the length of the feed-backing time interval in the
smart market are set to be 0.4sec. Also, the length of the observation interval in DCC is set to 80ms. For
both schemes, we ran three experiments with the parameters defined in Table 1. The first two



experiments have two customers with equal (60 unts ead per term) and unequal budgets (25 and 60
units per term) respedively. The third experiment has three wistomers with urequal budgets (15, 25and
35 unts per term). Note that customers are being charged prices per unit volumei.e. per unit bandwidth.

Tables 2 and 3show the average volumes all ocaed to the austomers during the experiments and
the total volumes all ocated to the austomers. They show that total volume dlocaed to all customersis
significantly higher in the cae of DCC (Note that maximum total volume is 0.4Mbps). This indicaes
that DCC better utili zes the bottlenedk. Figures 1, 2 and 3 pot the normalized values of volumes
allocaed to the aistomers. They indicae that the smart market model allocaes the volume to the
customer almost propationaly to their budgets, whereas DCC allocation is alittl e lesspropartional to
the budgets. This implies that in comparison to the smart market model, DCC has a lower econamic
efficiency.

Figures from 4 to 9 show the battlenedk utili zation under the DCC and the smart market models
in the three experiments. For the smart market model, we observe that there is a large transient period
before steady state is readed. Figures 10 to 15 show the queue length at the bottlenedk for the two
schemes. For both schemes we observe a stabilized queue suggesting that both schemes are ale to
control congestion.

In summary, the experiments suggest that the DCC is better from a cngestion management
perspedive becaise it adhieves a higher utilization and a quicker convergence to stealy state.
Interestingly, thisis achieved withou serioudy distorting volume dlocaions, which arein fad, closeto
those dtained by the smart market scheme. Nevertheless from a pure eonamic eficiency perspedive,
the smart market scheme gpeas to fare better. We have drawn these wnclusions by looking at the
gueue lengths, utili zation and mean volume dlocations. The other metrics (throughpu, goodpu and
padket losg presented in Table 4, reiterates the cngestion management benefits of DCC. In particular,
though the number of padets dropped is smilar, the aygregate throughpu and goodpu is markedly
better in the case of DCC.

Summary

We have proposed a dynamic cgadty contrading (DCC) framework primarily inspired by the
work of Clark [4] and Mac-Kie Mason & Varian [9], and the diff-serv architedure [1] which providesa
platform for implementation. The distinguishing feaures of our work include the idea of short-term
contrads, medanisms to suppat congestion-sensitive pricing of such contrads, use of pricing as atool
for congestion management, and a pragmatic focus on deployment isuues. We have dso proposed a
sample scheme in this framework to illustrate the potential of the framework and ill ustrate its

comparative performance tradeoffs vis-avis the smart market scheme. We believe that the DCC



framework could play a role in transition from today's completely flat-priced system towards a system
that includes congestion-sensiti ve pricing for certain classes of service We have dso proposed asample
implementation model for the smart market scheme ad explored the difficulties and isaues in its
implementation. Our on-going reseach in this areainclude the foll owing:

* Expansion d the concept of contrading to pant-to-anywhere ontrads

» Exploring the concept of “bandwidth intermediary” to fadlit ate the mediation between customers
and multi ple providers which employ the DCC framework

* Improving the basic DCC scheme itself in severa dimensions, naably in its relative volume
allocdions, dynamic estimation d budgets and demands and to suppat arich variety of contrads

* Investigating the issue of how long “short-term” contrads can be whil e maintaining the angestion-
sensitivity of the scheme.
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Experiment | Number of Budgets of Customers Simulation
Number Customers | Customer 1 | Customer 2 | Customer 3 Time
1 2 60 60 - 4sec
2 2 25 60 - 4sec
3 3 15 25 35 4sec

Table 1: Parameters of the experiments.

Mean Volumes Allocated to Customers in DCC Mean Volumes Allocated to Customers in Smart Market

Experiment Customer Total Allocated Experiment Customer Total Allocated
Number #1 #2 #3 Volume Num ber #1 #2 #3 Volume
1 0.18 ] 0.19 - 0.36 1 0.14 ] 0.14 - 0.28
2 0.14 | 0.25 - 0.39 2 0.07 | 0.18 - 0.25
3 0.09(0.12|0.15 0.36 3 0.04 | 0.07 | 0.11 0.22
Table 2: Mean volumes (Mbps) allocated to customersin DCC. Table 3: Mean volumes (Mbps) alocated to each customer in Smart Market.
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DCC Smart Market
Experiment | Goodput | Throughput | Packets | Goodput | Throughput | Packets
(Mbps) (Mbps) Dropped (Mbps) (Mbps) Dropped
1 0.964 0.966 33 0.700 0.748 42
2 0.958 0.958 40 0.615 0.663 43
3 0.944 0.946 35 0.537 0.583 40

Table 4: Performance metrics of the experiments for DCC and the Smart Market.

Mean Volume Allocations in Experiment 1 Mean Volume Allocations in Experiment 2 Mean Volume Allocations in Experiment 3
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Figure 14: DCC Queue Length in Experiment 3.

Figure 15: Smart Market Queue Length in
Experiment 3.



